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ESTIMATE.DOC - 1989

Estimation Procedures Used in PEDITOR
Following is a condensed Listing of the formulas used in the various programs in PEDITOR.

Analysis district estimator for ¥y in a single stratum.

Fr - - - 1
Yha = NhalL Yha * Pra*ha - xha)J where:

Nha = The number of frame units in the stratum in the analysis district

Yha = The mean of reported acres in the stratum in the analysis district

b,a = The slope from the regression model of the stratum in the analysis

district
X,a = The population pixel mean in the stratum in the analysis district
Xha = The sample pixel mean in the stratum in the analysis district

Analysis district estimator for y when combining strata with more than 2 segments per strata.

Strata should only be combined when the strata to be combined have the same characteristics ie. the
same land use stratification and the same expected segment size. Strata can be combined in lowa and
with care in Missouri.

r - - - 1
Yea = zha["ha(yha + b Xy - xha))J where the differences from above are:

bCa = The slope from the regression model using all segments in the combined
strata in the analysis district
X., = The population pixel mean in the combined strata in the analysis district

The following changes must be made in the calculations for strata that are to be combined but have
fewer than 2 segments.

Yha 1 Must be the weighted mean of the strata that do have more than 2
| segments. ie. weighted by frame units.

il
*ha
b Should be the slope from the regression model for the combined strata.

ca
Strata with less than 2 segments should be excluded from the model for
developing the slope.




Single Stratum Variance and R?
r - 1 r 1
Vary = N2 * Q- ny/Ng) * {Z(Yi - y)/n - Z)J *(1-R)* |1+ 1/(nh -3
L J

=
~
(]

(S2XY )2 /(S2Y*S2X) where:

§2XY = (Zxy - nxy)/(n - 1)

S2Y = (Zy* - n(y)*)/(n - 1)

82X = (2x* - n(x)?*)/(n - 1)

Combined Strata Variance and R?

When all combined strata have more than 2 segments.
r 1
Varg, = zh!_ah *st F (1 +2/(n- k- 2))J where:

8, = (Rp2/np) * (1 - (ny /M)

2
r - - 1
*h' = Ei|Ohi V) Pl - U

b, = (Za, * SZXY)/(Zah * §2X)

r 1
R? = |Var(DE) - Var(REG)|/Var(DE) where:
L J

Var(REG)c = ZhVarch
4

r 1 r 1
Var(DE), = | SoVar | * {1 + (2N, /N ,,)| where:
c L segs22 hJ ] h h )

Nh' = strata with # segs < 2
Nj+1 = strata With # segs 2 2

Changes needed when some of the strata to be combined have less than 2 segments.

1 - Calculate the variance for all strata with # of segs > 2 including the
adjustment factor 1 + 2/(n - k - 2)

2 - I variances for strata with 2 or more segments

3 - The varaince for strata with less than 2 segments is calculated as follows:

r 1
vary, = |2Nh./ZNh.. + (N /30,007 | * EVar,, where:
L J

h! = Strata with less than 2 segments
h'? = Strata with 2 or more segments
N+ = Frame units for strata h'

Nh.. = Frame units for strata h'"!




Regression County Estimate Procedure in PEDITOR

To determine the county level y for a county using the state level regression estimate, the number
of frame units in a county are multiplied times the adjusted county mean.

h cty = Nh cty * Yh adj cty

Yh adj cty =Y, or YO or YJ where:
Yety * BhapXcty - Xepy)

Y0 = b1hAD * Xcty - bOhAD where:

<
-
u

analysis district intercept by stratum
analysis district slope by stratum

bohap
B1hap

s

QA - &Yy + 8Yy
There are 5 rules use to determine the proper § value to use:

1) never use § = 1

2) always use § = 0 when no county in the analysis district has more than 2
segments

3) use § =T = 0 when 0 petween = 0

4y if a'uithin = 1.0 thenT =1and use § = 0
5) otherwise use § =T
where:

T = 0'petween /(¥ between ¥ 7 within/™) where:

azbetueen = The variance between county means within an analysis district by
stratum

o Jithin = The variance of reported data within a county by stratum

1f azbetueen = 0 then Y0 is used

4 = 0 then Y1 is used

*within
otherwise Vs is used.

The variance for the county level estimate is

= g? 2 -
Vary, cty %*between * 7 within
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The attached Xywrite document contains formulas for several large
domain crop area estimators that have recently been programmed in
PEDITOR. The separate regression estimator is the one that RSS has
always used. The other estimators can be computed using special
research programs known as ESTST and ESTLT, residing on Martin
Ozga's disk but not in the main PEDITOR directory. The
corresponding modules ESTS and ESTL still exist in the main
directory and are unchanged (i.e., only the separate regression
estimator is available). The alternative estimators will be studied
and compared with the current one using the past three years' Delta
data. The results will be presented at the ASA Conference in
Toronto.
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FIVE CROP AREA ESTIMATORS

Raw Pixel Count Estimator

QR0 = x
H
= ) X,
h=1
where:

A = conversion factor (area units per pixel)

o
I

number of strata

X

number of pixels classified to crop in analysis district

X, = number of pixels classified to crop in stratum h

Separate Ratio Estimator

H
=2 ﬁhxh
h=1
where:
¥, = sample mean reported crop acreage in stratum h
X, = sample mean pixels classified to crop in stratum h

Variance Estimator -
i 2 2 2
v[¥Ry = § [N, (N -n,) /0.1 (s, +R %s —2ﬁhsxyh]
h=1
where:

N, = number of population units in stratum h

n, number of sample segments in stratum h

thz = [1/(nh_1) ]Zh (Xhi-}-(h_)z
i=1



Th
Sy = [/ (1) 1T (Y=, )2
i=1

Mh
Sxyh = [1/(nh_1)]2 (xhi-)-(h.) (Yhi"yh,)
i=1

reported crop acreage in stratum h, sample segment i

Yhi
X,; = number of pixels classified to crop in stratum h,
sample segment i
Combined Ratio Estimator
R H H
Y = [T N, /L NT, X
h=1 h=1
= Rx
Variance Estimator -
A H A2 A
vy = § [N (N-n)/n ] (s, 2+R thz'ZRSxth
h=1
Separate Regression Estimator
A H J—
gUsRe) = ) N (Y, + Bh(Xh-ih‘)]
h=1

where:

- 2
Bh_ sxyh/sxh

X, = mean pixels per population unit classified to crop in
stratum h

Variance Estimator -

H
V(6% = § [N, (N-ny) (ny-1)/n, (n,-2) ] [Syhz—ghsxyh]
h=1



Combined Regression Estimator

YIRS = N(F, + B(X - %) ]
where:
N = number of population units in analysis district
H
Yoo = 2 (N/N)Y,
h=1
H

X, = L (N/N)X,
h=1

" H
b = (¥ Asnl/I(L BS,n° ]
h=1 h=1

X = X/N

Variance Estimator -

H
V(Q(CRG)) = h{:l[Nh(Nh'nh)/nh] [Syh2+gzsxh2_265xyh]
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SAMPLING THEORY WHEN THE SAMPLING-
UNITS ARE OF UNEQUAL SIZES*

By W. G. CocBRrAN
Towa State College

N SAMPLING, the sampling-units are usually chosen 8o as to be similar
I in size and structure. With some types of population, however, it is
convenient or necessary to use sampling-units that differ in size. Thus
the farm is often the sampling-unit for collecting agricultural data,
though farms in the same county may vary in land acreage from a few
acres to over 1,000 acres. Similarly, when obtaining information about
sales or prices, the sampling-unit may be a dealer or store, these ranging
from small to large concerns.

In such cases the question arises: Should differences between the
sizes of the sampling-units be ignored or taken into account in selecting
the sample and in making estimates from the results of the sample?
This paper contains a preliminary discussion of the problem, though
further research is needed, many of the results given below being only
large-sample approximations. It is convenient to consider first the prob-
lem of estimation, since it appears that the best method of distributing
the sample depefids on the process of estimation that is to be used.

' THE PROBLEM OF ESTIMATION

To state the problem of estimation in mathematical terms, we as-
sume that sampling units are drawn at random without regard to their
sizes, and consider how to estimate the population total of some quan-
tity y which can be measured on each sampling-unit. Associated with
each sampling-unit is also a quantity z, which is called its area rather
than its size, to avoid possible confusion between the terms “size of
sample” and “size of sampling-unit.” Some knowledge is assumed to
be available about the values of z in the sample, and possibly also in the
population.! In order to apply results from the statistical theory of
estimation, it is also assumed that the number of sampling-units in the
population may be considered infinite. Formulae applicable to the

* A paper presented at the 103rd Annual Meeting of the American Statistical Associstion in joint
session with the Institute of Mathematical Statistion, New York, December 30, 1941,

Jourpal paper No. J989 of the Iowa Agricultural Experiment Station, Ames, Iowa. Project No, 811,

t For some populations an alternative method of specification may be more appropriste. For in-
st each ling may ist of an integral number of sub-units, as in the ¢csss of human popula-
tions where the ling-unit is & b hold and the sub-unit is a single person. The specification may
be made in tarms of the value of ¥ per sub-unit and the number n of sub-units per sampling-unit (cf.
Hanson and Hurwits, 1942). Sinoe this approach would not apply in the examples given at the beginning
of this paper, it will not be considered heres.

Reproduced with permission from the Journal of the American Statistical Association, Vol. 37,
pages 199-212. Copyright © 1942.
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200 AMERICAN STATISTICAL ASSOCIATION *

practical situation of sampling from finite populations can be obtained
by adding suitable correction terms.

Stated in this way, the problem of estimation is a familiar one in
mathematical statistics. If the joint frequency distribution of z and y
in the population is known, the theory of estimation provides a routine
technique leading to an efficient estimate of the population total of y
and using to best advantage any available information about z. There
are, however, difficulties in utilizing this method of approach. The
joint frequency distribution is often known at best only vaguely from
the available data, and may not appear to follow any of the few types of
bivariate frequency distribution that have been studied. Further,
there are strong administrative arguments for keeping the computa-
tions involved in making the estimate as simple as possible; these re-
quirements may impose a bar on the use of estimates which, while
highly efficient statistically, are rather difficult to compute.

Both difficulties can be met to some extent by restricting the esti-
mates to those derived from the regression of y on z. For the calculation
of regression equations, it is not necessary to describe completely the
joint frequency distribution of z and y; we need only know how the
mean value and the variance of y change as z changes. These can be
examined from a graph or two-way table of the pairs of values of x and
y constructed from any available data. If the form of the regression line
and the relative weights assigned to different values of y are correct,
the regression estimate is a best unbiased linear estimate as defined by
David and Neyman (1938), though it is not a maximum likelihood
estimate unless in addition the values of y are normally distributed
within arrays in which z is fixed. The computations required for the
simpler types of regression line are well-known and not unduly labori-
ous.

ESTIMATES DERIVED FROM LINEAR REGRESSION

In the following sections it will be assumed that the quantity to be
estimated is the population total of y; any formulae can easily be al-
tered so as to refer to the estimation of the population mean per sam-
pling-unit.

The simplest case occurs when the mean value of y is linearly related
to the arca of the sampling-unit, with constant variance; i.e. y is of the
form a+Bx+e, where e has mean value zero and constant variance in
arrays in which z is fixed. In this case, the linear regression estimate
Y for the population total of y is

Yi= N{g. + bz, — £.)} 1)

28.200



-SaMPLING Tueory WueN Unrrs Arg or UNEQUAT SIZES 201

where N is the number of sampling-units in the population, b is the
sample regression coefficient S(y — #.) (z — £,)/S(z — £,)?, and the suffixes
p and s refer to the population and sample respectively. It will be noted
that this estimate requires a knowledge both of the total number N of
sampling-units and of the mean value of z in the population.

In samples in which the z’s remain fixed, the sampling variance of ¥,
is

V(¥) = Nio,2(1 — o) {l + (x—_x—)—} (@)
Y n Sz — £,)?

n being the number of sampling-units in the sample and » the correla-
tion coefficient between y and z. The distribution of ¥; tends to normal-
ity as n increases, being exactly normal for any size of sample if y is
normally distributed for fixed z. A sample estimate of this variance is
obtained by substituting for ¢,? (1 — %) the mean square s of deviations
from the sample regression line.

For comparison with other estimates we may require the average
variance of the regression estimate under random sampling. From (2),
this clearly depends on the form of the frequency distribution of the
areas. Since the areas are essentially positive, their distribution will not
in general be normal, except perhaps as an approximation. The mean
value of (2) may be expanded in a series of inverse powers of n, the
sample size. Retaining the two leading terms, we obtain

' fr —_ p2) 2
pery - Vol = o) {1 P } 3)
n - n n?

where v, is Fisher's (1941) measure of relative skewness (v,2=xs?/xs?).
If the areas were normally distributed, v, would of course be zero, and
the exact value for the term in curled brackets would be (n—2)/(n—3),
which agrees with the value given above to this order of approximation.
With large samples the factor is close to unity.

In many problems the true regression line must pass through the
origin, as for example when y represents corn acreage and z farm acre-
age. Even in such cases, it may be advisable to use the preceding type of
regression, if it appears on examination that a straight-line regression

not passing through the origin will provide a satisfactory fit, whereas it -

would be necessary to use a curvilinear regression in order to include
the origin. If a straight line through the origin can be used, y being of
the form (8£+e¢), with constant residual variance, the regression esti-
mate Y, (. for origin) of the population total is

28.201




202 AMERICAN STATISTICAL ASSOCIATION -

LS ., S()

Yo=Ng® = {Z()} ) 4)

where Z(z) is the population total of the areas. The variance of Y, is
V(Y.) = {Z(2)}%,(1 — %)/8(z?. (5)

The number of sampling-units in the population does not enter into
either of these formulae, which require only the population total of the
areas. :

The expression for the average value of this variance, under repeated
random sampling, is rather complicated. If the distribution of the areas
is not far from normal, the leading terms give

Nig(1 — p?) {1 2¢.(2 + cs)}
a(l + c,) n(l + ¢,)?

¢,=0,2/%,* being the square of the coefficient of variation of z.

From formulae (3) and (6), we may compare the sampling errors of
Y, and Y, with that of the estimate Y, (8 for sampling-unit) which is
obtained by multiplying the sample mean per sampling-unit by the
total number of sampling-units, and is commonly used where sampling-
units are equal in size. Since the variance of Y, is N0 /n, the ratios of
the three pairs of variances in large samples are as follows:

LSO (¢ N el I (O
V(Y.) V@Y T Ude) V(YY) (e
The additional factors involving 1/n and 1/n? have been omitted from
these expressions; they should be included in practical applications un-
less they are negligible. In large samples, both regression estimates are
more accurate than the sample-mean estimate, the gain in accuracy be-
ing considerable if p is high. As would be expected, ¥, is more accurate
than Y; when the true regression line is straight and passes through the
origin, the increase in accuracy depending on the coefficient of variation
of the areas.

These results must be interpreted with care. They indicate that in
large samples Y; can never be less accurate, on the average, than Y,.
This statement was proved under the assumption that the true regres-
sion is linear (whether it passes through the origin or not); in the fol-
lowing section it will be shown to hold substantially even if the true
regression is not linear. The conclusions about Y, have a much more
restricted validity, holding only if the true regression is linear and

V(Y,) = )

™

28.202
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however, a loss of efficiency which remains fixed in large samples. While
no exact small-sample theory has been reached, it appears that both
the estimate itself and the estimated variance are biased in small sam-
ples.

WEIGHTED REGRESSIONS

Thus far we have considered the case in which only the mean value
of y changes as x changes. The variance of ¥ may also change, particu-
larly so if there is considerable variation in the areas of the sampling-
units. The theory of regression has been extended to meet this case,
provided that the ratios of the variances of different values of y are
known exactly, a condition which rarely if ever holds in problems of this
type. If the true residual variance of y; is ¢.?, and w;=1/¢: the best
unbiased linear estimate ¥, is

Yor = N{ju + bu(p — Zu)} (12)

where Jw=8(wy:)/S(w;), £.=8(wz:)/S(w:) are weighted sample
means and b.,=S8wi(z:— %) (yi—Fu)/Swi(z;—~£.)? is the weighted
sample regression coefficient. For a fixed set of z’s the sampling vari-
ance of Y, is

V("Yul) = N2

+ (jr - :zw)2 }. (13)

{S(w‘) Swi(z: — 3,)?

It will be noticed in (12) that Y, remains unchanged if instead of the
correct weights w; we use numbers w;’ =Aw; which are proportional to
the weights; i.e. only the relative weights assigned to different values of
y need be known in order to calculate Y, . Formula (13) for the sam-
pling variance cannot be used however unless the actual values of the

‘weights are known. If only relative weights w,’ are known, an unbiased
sample estimate of (13) is given by

Sy Yy L s,

8*Yw) = N n - 2) S(ws")  Swi(z ~ .)?

where Sw;’(y;— Y:)*/(n—2) is the weighted mean square of deviations
from the sample regression, using w;’ as weights.

In practiee, before these formulae can be used, it will be necessary to
estimate the residual variances, and hence the weights, from the results
of the sample and any other comparable data. Baker (1941) has re-
cently discussed this problem for the case in which the z's fall into a
number of distinct groups, all z’s having the same value within each
group. More generally, the z’s will show a continuous range of varia-

28.205




206 AMERICAN STATISTICAL ASSOCIATION -

tion. Space does not permit a detailed investigation of the best proce-
dure for estimating the weights in this case. If the weights are presumed
to change continuously as z changes, the first step seems clearly to sub-
divide the range of variation of z into a number of groups. The residual
variance of y within each group can then be estimated by fitting an
unweighted linear regression of y on z separately for each group. From
these results, the relation between the residual variance and the area
can be studied, and a smooth curve drawn to give the variance as a
function of z. The weight to be assigned to any value of y is then ob-
tained by noting the area of the sampling-unit, reading the curve, and
taking the inverse of the variance,

The greater the number of groups, the more points are available for
appraising the relation between variance and area. A further advantage
of having many groups is that if the range of z is small within the
groups, the within group correlation between y and z may be negligible,
so that the total within-group mean square of y may be used as equiva-
lent to the residual mean square, thus obviating the necessity of fitting
a regression within each group. However, as the grouping is made finer,
the number of observations within each group decreases, leading to less
accurate estimates of the within-group variances. The optimum num-
ber of groups is not clear without further examination, though at a
guess it seems advisable to have at least 20 observations in each group.

The estimated weights are, of course, subject to sampling errors.
These errors. have two consequences. The estimate Y, is not as ac-
curate as it could have been made if the true weights had been known.
This loss of accuracy is unavoidable, the somewhat laborious process
described above for estimating the weights being an attempt to reduce
the loss to a minimum. Secondly, and somewhat more seriously, both
formulae (13) and (14) give biased estimates of the sampling variance
of Y. even in large samples, i.e. even ignoring the correction terms of
order 1/n which have appeared in previous formulae. If w,’ are the
estimated and w; the true weights, the correct sampling variance of
Y.:in large samples appears to be

w.-’* ,
NS(-;T) /(Sw.- )2. (15)

Substituting w;’ for w;, formula (13) gives for large samples
N*/S(w:’) (16)

while (14) gives, on the average

28.206
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ESTIMATION BY USING POPULATION WEIGHTS

If a complete tabulation of the areas of all sampling-units in the pop-
ulation is available, the areas can be sub-divided into groups or strata,
an estimate of the total of y being made for each stratum. While this
procedure could be carried out with all the estimates previously dis-
cussed, this investigation will be confined to the simplest estimate Y,.
Ifny, ... 70k Ny, ... Niare the numbers of sampling-units in the sam-
ple and population respectively for the k groups, the estimate Y,, of the
population total over all strata is

Yal = (ngl + e ‘+ ngk) (23)
the sampling variance being
N2 2 N2 2 N 2,2
V(Y,,.)=(”’+ o+ “") (24)
n N2 Nk
where 1% . . . o\? are the within-strata variances of y.

As shown by Neyman (1934), this variance is smallest, for a fixed
total size of sample, when the sample is distributed amongst the groups
so that n; is proportional to N,e;. To retain comparability with pre
vious estimates, however, we will assume that the sample is chosen at
random. 3

In large samples, the average value of (24) works out approximately
as .

v - _1:_2 {(Nm=+ R ng‘)(l 1 )

- -
+ X (ﬂ’+~--+af)}
n k

n

(25)

where n and N are as before the total numbers of sampling-units in the
sample and population respectively. The expression inside the curled
brackets contains both a weighted and an unweighted mean of the
within-strata variances of y.

If all within-strata variances are the same, this reduces to

V(Yo = N:"(l 5o 1) . (26)

n

By increasing the number of z-groups with a given sample, the
within-group variances are presumably decreased, since that portion of
the variances of y which is due to variation in z is decreased by cutting

28.209



210 AMERICAN STATISTICAL ASSOCIATION -

down the range of z within each group. However, the factor involving k
is of course increased as k increases, so that a point is reached beyond
which a further increase in the number of groups will result in less ac-
curacy. From (26) it follows that in the case of equal variances the
factor involving k is relatively unimportant provided that (k—1)/n is
less than say .05, which holds if the average number of observations per
group exceeds 20.

On comparing (26) with (3), Y,. is found to be somewhat less accu-
rate than the linear regression estimate Y if the true population regres-
gion is linear with equal variances. This follows because the within- -
stratum variance ¢? cannot be less than ¢,2(1 —p?), while the additional
factor in 1/n is also larger for Y, than for ¥;. This conclusion was to be
expected, since under the conditions mentioned Y, is a best unbiased
linear estimate. If however the relation between y and z is markedly
curvilinear or discontinuous, Y, may be superior to ¥, since the varia~
tion in y arising from any type of relation with z can be reduced by a
suitable choice of strata, whereas ¥; eliminates only the effects of the
linear component of the relationship. Moreover, Y,, is an unbiased
estimate for any type of relation between y and z and any size of sam-
ple. Similarly, an unbiased estimate of the variance of ¥, is always ob-
tained by substituting the sample within-strata mean squares in (24).

Similar comparisons can be made between Y, and the weighted
linear regression estimates by means of the formulae given for the sam-
pling errors. Goldberg (1942) has discussed briefly the properties of
Y,., the corresponding weighted estimate derived from the sample
mean per unit area within each group.

FURTHER NOTES

Some apology is needed for presenting in the previous sections a num-
ber of large-sample approximations without guidance as to the limits
within which these apply. Unfortunately these limits depend on the
form of the joint frequency distribution of z and y, and could not be
specified more definitely without a classification of the types of fre-
quency distribution. Moreover, in extensive surveys, where problems of
organization are difficult, biases may arise through the method of se-
lecting the sample, incompleteness in the returns, and errors in report-
ing or recording the data. Such biases, while affecting the accuracy of
the estimates, may not be measured by the formula for the sampling
error, so that a rough approximation to the sampling error is often suf-
ficient for practical purposes.

28.210
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If the correct form of regression is used, population estimates de-
rived from regressions remain unbiased in non-random sampling, pro-
vided that all sampling-units with the same area have an equal chance of
gelection. Thus the large sampling-units might be allotted a greater
chance of inclusion in the sample, this procedure giving a more accurate
estimate whenever the variance of y increases as z increases. On the
other hand, if the method of selection discriminates in favor of certain
sampling-units amongst those of the same area, bias may arise.

The formulae in this paper will of course apply to any variable z
which is correlated with y. For example, in agricultural sampling, where
the sampling-unit is sometimes a fixed area of land, z may be taken as
the number of farms in the area, the total farm land or the total crop
land, according to which gives the highest correlation with y.

In developing correction terms to be applied where an appreciable
fraction of the population is sampled, the initial difficulty is that of de-
fining a regression in a finite population. Writing y =a-fz+e, we may
suppose that ¢ has no linear correlation with z in the finite population,
but if we attempt to postulate that e is uncorrelated with any power of
z, the number of conditions to be satisfied is greater than the number of
values of e available, so that e and z cannot be independently distribu-
ted in the sense in which this term is applied with infinite populations.
An alternative approach is to regard the finite population as a random
sample from an infinite population in which ¢ and z are independent.
From a preliminary investigation and from Goldberg’s (1942) work, it
appears that the first approximation consists in multiplying formulae
(2), (3) and (22) for the sampling-variances, and formulae (11) and (21)
for the biases by (N —n)/N, this being the same correction as in the case
of the sample-mean estimate Y,. In formula (24), each term is multi-
plied by the corresponding factor (N;—n:)/N;. For Y, the estimate
derived from a straightline regression through the origin, and Y, the
weighted linear regression estimate, further investigation is needed.
The difficulty arises because these two estimates do not equal the true
population total when the sample consists of the whole finite popula-
tion; i.e. they are inconsistent in the sense of Fisher (1941) whereas

Y., Y1, Y., and Y, are always consistent.

For sampling surveys in which the areas z of the sampling-units are
unequal, the properties of various estimates of the population total of
some observed quantity y are discussed, these estimates being mostly
derived from the regression of y on z. In order of ease of calculation, the
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estimates are as follows; Y,, derived from the sample mean per sam-
pling-unit; Y,, derived from the sample mean pcr unit area; Y., a
weighted form of Y,, using population weights; ¥, and Y, based on un-
weighted linear regressions; and Y,, and Y, using weighted regres-
sions. The conditions under which each estimate is most efficient are
described, with various comparisons of their relative efficiencies.
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changed, the smaller the within-class variations and the more
separable are the two classes for a given vector. On the other
hand, if the within-class variations are constant, the higher the
inter-class deviation and again the more separable the two classes
are. The separability for all vectors is obtained by summing up
all the divisions between inter- and within-class deviations.

In order to examine the separability power of a given pixel
window size, an average is taken from separabilities for all pos-
sit i¢ class pairs. This is calculated from

s=1 t=se+1

1 ¢~ (1
Sepi = Ty 2,2, e )

where Sep, is the average separability for all the classes with a

iven pixel window size. By comparing the average separabil-
ities from different window sizes, a pixel window size is se-
lected which has the greatest average separability.

T€ CLASSIFIER

The classifier used in this study is the minimum-distance clas-
sifier with the city-block metric (Gonzalez and Wintz, 1987). A
citv-block distance between two vectors is calculated by first
obtaining a difference between every two corresponding vector
elements, and then summing all the absolutes of these differ-
ences. There are two reasons for selecting the dty-block dis-
tance. The first is that this distance is the simplest one in terms
of computation, and therefore it could be used to handle oc-
currence frequencies extracted from an image with more gray-
l.vel vectors. Second, because we are comparing frequencies to

wake the classification decision, the use of Euclidian distance
or other metrics is meaningless. In fact, some preliminary tests
have been made in this study to compare the performances of
the city-block metric and the Euclidian metric. Overall accura-
cies were on average 5 percent higher in favor of the dty-block
metric.

For given mean histograms of all ¢ land-use classes, h, =
FDLfu(2)s wos fuNL), u =1, 2,..., ¢, the city-block distance be-
tween a new histogram h(i,j) and h, is calculated from the foi-
lowing:

Ne -1

d,= 3

vy

fu (U) - f(l, jf U)

The classifier compares all the ¢ distances and assigns pixel
(i,j) to the class which has a minimum distance to (i, j).

PERFORMANCE ASSESSMENT

To evaluate the performance of the classification methods,
two criteria are often used: final classification accuracy and the
time consumed during the classification process. There are two
types of time included in the “time consumed during the clas-
sification process:” the hours of human labor and the CPU times
used by computers. While it is difficult to estimate accurately
and compare the time consumed by human labor because of
the different skill levels of different image analysts, it is rela-
tively easy to determine and compare the CPU times required
by computers. In this study, the CPU time was used as an index
for the “time consumed during the classification process.”

The most commonly used accuracy-assessment method is test-
sample checking. It requires three steps: determination of sam-
ple size and sampling strategy, sample identification (ground
confirmation) to generate reference data, and comparison of the
reference data with classification results to derive classification
accuracies. The first two steps are described in the experimental
design section. The third step is discussed below.

For a classified image (or a map), a confusion matrix (also
called an error matrix or a contingency table) can be made by
comparing the classification results with reference data. In this
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matrix, the reference data are represented by the columns of
the matrix while the classified data are represented by the rows,
or vice versa. The major diagonal of the confusion matrix indi-
cates the agreement between these two data sets. The confusion
matrix allows various accuracy indices to be derived.

In this research, the Kappa coefficient K (Cohen, 1960) and
its estimated variance V (Fleiss et al., 1969) were calculated for
each confusion matrix to evaluate the overall agreement be-
tween the classification results and the reference data. The Kappa
coefficient was used as an overall accuracy index for each clas-
sification. It has been recommended as a suitable accuracy mea-
sure in thematic classification for representing the whole
confusion matrix (Fung and LeDrew, 1988; Rosenfield and Fi-
tzpatrick-Lins, 1986; Congalton and Mead, 1983). It takes all the
elements in the confusion matrix into consideration, rather than
just the diagonal elements, which occurs with the calculation
of overall classification accuracy. The variance was used when
significance tests were made.

For an m by m confusion matrix, let p,; be the proportion of
subjects placed in the i, j* cell; let p;. and p_; be the proportions
of subjects placed in the i* row and j* column respectively.
Then, with

Po = Z pi and p, = Zl Piv Peir

the Kappa coefficient K is defined by

;> Ps ™ Pe
K=E_F
1-p.

where p, and p, indicate the proportion of units which agree,
and the proportion of units for expected chance agreement,
respectively. With the above definition, Fleiss et al. (1969) showed
that the most appropriate method to estimate the variance of X

1S

- 1 m X
V= N(l - Pc)‘ {'-zl Pi [(1 - pC) - (p"' * p") (1 - pa)]

+ (1 - Po)z 121,‘2:1 pij (Pi— + P’l)z - (popc - ch + Po):}

To determine the difference between two K s, the significance
test proposed by Cohen (1960) for comparing two classification
results was adopted. With this method, the difference between
two Kappa coefficients resulting from two classifications is first
obtained. The square root of the sum of the variances Var be-
tween the two classifications is then calculated. A z-value can
be determined by dividing the difference by the square root. A
z-value greater than 2.58 indicates a significant improvement at
the 0.99 probability confidence level.

In order to examine classification accuracies on a class-byv-
class basis, the conditional Kappa coefficient (Bishop et al., 1973)
was derived by comparing the classification results and the ref-
erence data. The conditional Kappa coefficient K; is a class ac-
curacy index which is derived from the agreement between the
* row and i* column in the confusion matrix for a particular
land-use class i. The formula used to calculate the conditional
Kappa coefficient is

Pi — Pi. P
K = —==
pio - piv P°|
Notations in this formula are the same as above.
EIGEN-BASED GRAY-LEVEL VECTOR REDUCTION

As explained in the above section, in order to make better
use of the frequency-based classification technique, the number

£ Yy2s
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REGRESSION ESTIMATES OF POPULATION MEAN
IN STRATIFIED SAMPLING: ({ CASE OF COMBINED REGRESSION

l. Variance Formulas: —_
on poﬂyqu—,
For the h stratum, let Nh and ny be the stratum and sample
Sdnel— =

size, respectively, and

Elyplxy) = ap + 8x

2
Var(yhlxh) = oy , h=1,2,...,K.

For the samples, first compute the stratified sample means -

IW, ¥y P Xgy = IW, Xy

where
W, o= Nh/Z N, .
Following Cochran (1977), consider the combined regression

estimate of population _mean Y given by

Y=/Tt)+ bc (X?—@) Y7 — X -
where B
o~ ,//2‘
b. =ZLals /Zals “ " N
ﬂgg . ;ﬁ€§¥{ “,é\lf N
with o \
2 L (/ o0 ﬁJ‘Z/ZI ?
and sxy and sx2 are sample covariance and variance,/régpectively.

It then follows that the conditional variance of Y, given x's ,
is

var(¥) = £ a + (X - x_ )% var(p) (1)

holl st
where

var(b,) = [ za,’s % o, %/(n, - D1/lzas 217, (2)
Cochran ignores the secgnd term in (1), assuming var (bc) is
negligible.

The unconditional variance of §, obtained by taking
expectation of the expression in (1), is

VIY) = pa ahz + (3 ahsxhz)E[Var(bc)]. (3)

-1-



Let

2 2 2
S¢h %h /(o — 1)

2
xh

L = Zah

M = Zah s

so that
Var(bc) = L/MZ.
By considering a Taylor series expansion of L/M2 as a function of
2 1

S,y + it can be shown that up to the order of n ~, the

unconditional variance of bc is

) 2
E(Var(b )] = [Ly/My2l (1 + Q)] (4)
where
_ 2. 2 2 _
Ly = Zap S, op /iny = 1)
My = ZapS.y

2

which are obtained by replacing sx2 by Sx in L and M,

and

_ 2 2

S /(n =113 - 2a,% 0 Mo/ (n ~1la, Lyl

Although a substitution from (4) into (3) provides the
unconditional variance to O(n—2), it is an highly involved
expression. Considering a further approximation of Q1 under the
assumption that the parameters are equal for all strata, one
obtains

V(§) = ( Zah chz)[l + 1/(n-K-2)] (5)
where h = Znh and(EBis the number of strata.

In the special case of K=1, the variance in (5) reduces to
the usual formula,

(1-£) (o 2/m) (1 + 1/(n-3)]

as given in Cochran (1977).

2. Variance Estimates

An estimate of any of the variances given above in (3) and

-2-




(5) is obtained by replacing the unknown parameters by their
estimates. Denote the estimates of variances in (3) and (5) by

vy and v, obtained by replacing th by

sh2 = Llfyp; - 17@- b (xp; - ialz/(nh—l)
and sz by sxz. In addition, if only the leading term in these
estimates is retained, one obtains the variance estimate given by

vo1) =z1as 2. (6)
This estimator is the same as in Cochran, p.203.

The stratum error variances ohz, h=1,2,..,K, are estimated
with nh-l degrees of freedom. This overlooks the degree of.
freedom required to estimate B and thereby cattses underestimation
of V(?). This underestimation can be compensated for by
multiplying vg, v; and v, by (n-K)/(n-K~=}). (Note that n-K =
Z(nh—l).). The resulting variance estimates will be denoted by

0',vl' and v,'. In particular, the variance estimator

corresponding to (5) simplifies to ﬂaLva”““““l*A}'

v

vz'(?Tg; (s a&shz)[l + 2/(n-K-2)]. ,) (7)
\\\‘_#L_ﬂﬁ*,_“ﬁw,w_/~~ T
3. Simulation Results R

A population consisting of six strata was considered. Each
stratum mean was taken to be 100. The other stratum parameters
(size and error variance) and the sample sizes were considered

equal as well as unequal. The following was the input data:

Case 1: (All input same)

=1,000 , n =10, o¢,% =100, h = 1,2,3,4,5,6.

N h h

h



Case 2: (Only stratum sizes different)

h 1 2 3 4 5 6
N, T500 1500 00 500 300 700
n. = 10 o 2 = 100

h ' h

Case 3: (Stratum sizes and sample sizes different)

h 1 2 3 4 5 6
N I500 1500 500 500 200 200
np, 15 15 10 10 5 5

Case 4: (Unequal stratum parameters and sample sizes)

h 1 2 3 4 S5 6

Ny 1500 1500 500 500 200 200

ny, 15 15 10 10 5 5
2

oh 1590 120 100 100 80 80

Case 5: Input as in case 4 and different correlation coefficients
for strata

For the correlation coeficient, four different cases were .
considered corresponding to 92 = .25, .50, .70 and .90.

The attached table lists the simulation results obtained for
the ratio of estimated variance to observed variance. Given are
these ratios for the three variance estimators vo‘, vl', and v2'

as well as Vo- The simulation results are based on 1000

replications.

Theselresults show that vy (and also, Vo') provides an

underestimate of the variance in this example as much as 10
percent. The performance of the other two estimators is about

the same. However, vz' is much simpler to compute and hence,

recommended over the other one.

—4-



Table:

Ratio of the estimated to observed variance of the
combined regression estimator

o] 2 Case Observed Variance Ratio
Variance vlT v2' vo' vy
.25 1 1.279 .962 .961 .943 .926
2 1.906 1.032 1.004 .986 967
3 1.502 .938 .932 .914 .897
4 1.896 .962 .953 .935 - .918
5 1.934 1.043 1.029 1.019 991
.50 1 .901 .970 .970 .952 .934
2 1.383 .954 .928 .910 .894
3 .981 .984 .978 . 959 .941
4 1.268 .986 977 .958 . 940
5 1.650 .998 .984 .966 .948
.70 1 .447 1.036 1.036 1.017 .997
2 .794 1.000 .973 . 955 .937
3 .633 .942 .935 .918 .901
4 .685 1.064 1.054 1.034 1.015
5 1.114 1.000 .986 .968 .950
.90 1 .153 1.078 1.078 1.057 1.038
2 .278 .968 .942 .924 .907
3 .198 .942 .936 .918 .902
4 .236 1.011 1.001 .982 .964
5 .487 .960 .948 .930 .913
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OBJECTIVES

INVESTIGATE THE ROBUSTNESS OF REGRESSION ESTIMATOR WHEN THE
ERRORS HAVE

. NON-NORMAL DISTRIBUTION

. NONHOMOGENEOUS VARIANCES

INVESTIGATE THE VARIANCE ESTIMATION
« VARIANCE FORMULA FOR LARGE SAMPLES

. VN (SMALL SAMPLE VARIANCE) AS A SUITABLE VARIANCE

ESTIMATOR



A
VARIANCE ESTIMATORS FOR X
LARGE SAMPLE APPROXIMATION:

V.= (- s2n

WHEN
g2 = Ilx; - X{)%/(n - 2),

COCHRAN FORMULA:
Vo= (L= T8 2L + 1/n-3) + 29202

NORMAL APPROXIMATION:

v, = (- f{§82%>[1 + 1/(n-3)1

VARIANCE UNDER THE PRESENT MODEL:

Vo= (1 - fxéez/" 1+ 1/(n=3) + 02(1 - p2) (K, + K¢)/(n-1)]

;‘( :
e ! Py
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TABLE : RATIO OF ESTIMATED TO ACTUAL VARIANCE OF X
(CASE OF NORMAL ERRORS)

5 VARIANCE ESTIMATOR
( P n Va N Vo Ve

.25 4 .588 1.175 1.245 1.244
10 .881 1.007 1.048 1.016
25 1.015 1.061 1.073 1.062

.70 4 .504 1.007 1.074 1.073
10 .832 0.951 1.012 0.962
25 .878 .918 .943 .920

.90 4 .434 .868 .913 .930
10 .766 .875 .907 .898

25 .915 «957 .972 .960




TABLE ¢ RATIO OF ESTIMATED TO ACTUAL VARIANCE OF

-~

XR (CASE OF NONNORMAL ERRORS -y, = 1.1,
o e e e
Y, = 1.1)
> VARIANCE ESTIMATOR
n VA VN VO VC
.25 4 .400 .800 .849 .851
10 .799 .913 .998 .928
25 .896 .937 .989 .940
10 .799 .913 .998 .928
25 .896 .937 .989 .940
.90 4 .345 .690 .724 .735
10 .779 .890 .912 .905

25 .858 .897 .896 .900




TABLE : RATIO OF ESTIMATED TO ACTUAL VARIANCE

OF X_ (CASE OF NONHOMOGENOUS BUT NORMAL

R - s T
ERRORS*)
—_—_—
VARIANCE ESTIMATOR
p 2 n VA VN VO VC
.25 4 .501 1.002 1.063 1.070
10 .761 .870 .905 .887
25 .936 .978 .987 .982
.70 4 335 .670 «710 .720
10 . 776 .887 .938 .908
25 .909 . 950 «975 .955
.90 4 .387 <773 .814 .820
10 .813 .929 .960 .950
25 «943 .985 1.000 .990

* var (e|x) o< x



CONCLUSIONS

ESTIMATORS ARE ROBUST WITH RESPECT TO DEPARTURE FROM
NORMALITY OF THE ERROR DISTRIBUTION.

NONHOMOGENEITY OF ERROR VARIANCES AFFECTS SIGNIFICANTLY
THE RELATIVE EFFICIENCY OF THE CLASSICAL ESTIMATORS.

THE EFFICIENCY OF THE REGRESSION ESTIMATOR IS REDUCED
SLIGHTLY (AT MOST 15%) DUE TO NONHOMOGENEITY OF ERROR
VARIANCES.

NO EFFECT ON BIAS (WHICH IS NEGLIGIBLE AND OR INSIGNIFICANT)
DUE TO NONNORMALITY AND NONHOMOGENEITY.

VARIANCE ESTIMATOR VN

« LACK OF NORMALITY

IS FAIRLY ROBUST WITH RESPECT TO
. NONHOMOGENEITY OF ERROR VARIANCES

VARIANCE ESTIMATOR Vo

IN THE PRESENCE OF NONNORMALITY AND/OR NONHOMOGENEITY.

IS OVERALL THE BEST THOUGH MARGINALLY



0 BIAS IS INSIGNIFICANT ﬁND/OR NEGLIGIBLE FOR ALL ESTIMATORS.

CONCLUSIONS

0 REGRESSION ESTIMATOR (f% IS THE MOST EFFICIENT,
0 RELATIVE EFFICIENCY OF X DEPENDS UPON o AND SAMPLE SIZE n:

0
0

0
0

0
e

RE < 1 FOR o2

.25

1 < RE < 2 FOR 02 = ,70
0 2 <RE<5.5FO0R 2 = ,90

1 <RE <1.5 FOR 0% = .25
2.5 € RE < 4 FOR 0% = .70

7S<RE<UFR P2 =00 |

70 LARGE SAMPLE VARIANCE PROVIDES SUBSTANTIAL UNDERESTIMATION FOR n =
0 OTHER VARIANCE ESTIMATORS PERFORM EQUALLY WELL:
0 SKEWNESS AND KURTOSIS HAVE NEGLIGLIBLE EFFECTS
0 VARIANCE BASED ON NORMAL APPROXIMATION (Vy) AND THE ALTERNATIVE VARIANCE
ESTIMATOR (V,) BASED ON THE APPROPRIATE MODEL HAVE SIMILAR PERFORMANCE

e—
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